Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
JCO Precis Oncol ; 7: e2200538, 2023 02.
Article in English | MEDLINE | ID: covidwho-2241514

ABSTRACT

PURPOSE: The introduction of COVID-19 therapies containing ritonavir has markedly expanded the scope of use for this medicine. As a strong cytochrome P450 3A4 inhibitor, the use of ritonavir is associated with a high drug interaction risk. There are currently no data to inform clinician regarding the likely magnitude and duration of interaction between ritonavir-containing COVID-19 therapies and small-molecule kinase inhibitors (KIs) in patients with cancer. METHODS: Physiologically based pharmacokinetic modeling was used to conduct virtual clinical trials with a parallel group study design in the presence and absence of ritonavir (100 mg twice daily for 5 days). The magnitude and time course of changes in KI exposure when coadministered with ritonavir was evaluated as the primary outcome. RESULTS: Dosing of ritonavir resulted in a > 2-fold increase in steady-state area under the plasma concentration-time curve and maximal concentration for six of the 10 KIs. When the KI was coadministered with ritonavir, dose reductions to between 10% and 75% of the original dose were required to achieve an area under the plasma concentration-time curve within 1.25-fold of the value in the absence of ritonavir. CONCLUSION: To our knowledge, this study provides the first data to assist clinicians' understanding of the drug interaction risk associated with administering ritonavir-containing COVID-19 therapies to patients with cancer who are currently being treated with KIs. These data may support clinicians to make more informed dosing decisions for patients with cancer undergoing treatment with KIs who require treatment with ritonavir-containing COVID-19 antiviral therapies.


Subject(s)
COVID-19 , HIV Protease Inhibitors , Neoplasms , Humans , Ritonavir/adverse effects , HIV Protease Inhibitors/adverse effects , COVID-19 Drug Treatment , Neoplasms/drug therapy , Drug Interactions
2.
Pharmaceutics ; 13(5)2021 Apr 22.
Article in English | MEDLINE | ID: covidwho-1244099

ABSTRACT

The treatment of respiratory tract infections is threatened by the emergence of bacterial resistance. Immunomodulatory drugs, which enhance airway innate immune defenses, may improve therapeutic outcome. In this concept paper, we aim to highlight the utility of pharmacometrics and Bayesian inference in the development of immunomodulatory therapeutic agents as an adjunct to antibiotics in the context of pneumonia. For this, two case studies of translational modelling and simulation frameworks are introduced for these types of drugs up to clinical use. First, we evaluate the pharmacokinetic/pharmacodynamic relationship of an experimental combination of amoxicillin and a TLR4 agonist, monophosphoryl lipid A, by developing a pharmacometric model accounting for interaction and potential translation to humans. Capitalizing on this knowledge and associating clinical trial extrapolation and statistical modelling approaches, we then investigate the TLR5 agonist flagellin. The resulting workflow combines expert and prior knowledge on the compound with the in vitro and in vivo data generated during exploratory studies in order to construct high-dimensional models considering the pharmacokinetics and pharmacodynamics of the compound. This workflow can be used to refine preclinical experiments, estimate the best doses for human studies, and create an adaptive knowledge-based design for the next phases of clinical development.

SELECTION OF CITATIONS
SEARCH DETAIL